
Adapting the INS3D-LU Code to the CM2 and iPSC/860

Rod Fatoohi"

Report RNR-92-024, August 1992

Abstract

This paper presents the results of parallelizing the INS3D-LU code on

a 32k processor Thinking Machines CM2 and a 128 node Intel iPSC/860.

The main objective of this work is to study the performance of a full

Navier-Stokes solver on a massively parallel SIMD machine and a dis-

tributed memory MIMD machine and compare it with its performance

on an eight processor Cray Y-MP. The code is based on a Lower-Upper

Symmetric-Ganss-Seidel implicit scheme for the pseudocompressibility for-

mulation of the three-dimensional incompressible Navier-Stokes equations.

The code was rewritten in CM Fortran with shift operations and run on

the CM2 using the slicewise model. Also, it was rewritten with distributed

data and Intel message passing calls and run on the iPSC/860. The tim-

ing results for two grid sizes are presented and analyzed using both 32
bit and 64 bit arithmetic. Also, the impact of communication and load

balancing on the performance of the code is outlined. The results show

that reasonable performance can be achieved on these parallel machines.

However, the Cray Y-MP has outperformed the CM2 and iPSC/860 for

this particular algorithm.

SUBMITTED TO THE JOURNAL OF SUPERCOMPUTING.

• Computer Scientist. NAS Applied Research Branch, NASA Ames, MS T045-1, Moffett Field,
CA 94035. The author is an employee of Computer Sciences Co. This work was funded through

NASA Contract NAS 2-12961.



1 Introduction

The current generation of parallel computers can perform at peak rates of several

billion floating point operations per second. Based on peak rates, some of these

machines outperform the fastest vector supercomputer by an order of magnitude.

(The peak rate for the 64k processor CM2 is 28.67 Gflops compared to 2.67 Gflops

for the eight processor Cray Y-MP.) However, performance of the parallel machines

varys significantly from one application to another. Some of them achieve a good

percentage of their peak for a wide range of applications while others do that only

for very specific well written codes. It is well known that the performance of high

speed computers is dependent on several factors including architecture, computational
algorithm, and software environment.

One of the major problems with parallel machines is to understand how to use

them efficiently. Theoretical studies of this question are valuable. However, compar-

ative studies, wherein the same algorithm is implemented on a number of different

architectures, provide an equally valid way to this understanding. Studies, carried

out for a wide variety of algorithms and architectures, can highlight features of the

architectures and algorithms which make them suitable for high performance. Also,

comparative studies can exhibit detailed features of an architecture and/or algorithm

which are bottlenecks that are overlooked in theoretical studies. The success of this

approach depends on choosing "significant" algorithms for implementation and car-

rying out the implementation over a wide spectrum of architectures. If the algorithm

is trivia/or embarrassingly parallel it will fit any architecture well. We need to use

algorithms which solve the hard problems attacked in the scientific and engineeringcommunity.

This paper presents an experiment where the performance of a full Navier-Stokes

solver on a 32k processor Thinking Machines CM2 and a 128 node Intel iPSC/860 is

studied. The code, INS3D-LU, is based on a Lower-Upper Symmetric-Gauss-Seidel

(LU-SGS) implicit scheme for the pseudocompressibility formulation of the three-

dimensional incompressible Navier-Stokes equations [9]. The two machines were

chosen because of their architectures, high peak rates, a_d accessibility. The two

machines are distributed memory multiprocessors and represent two different archi-

tectures and programming models: a SIMD highly parallel machine and a MIMD

moderately par.allel machine. Both machines are located at the Numerical Aerody-
namics Simulation (NAS) Systems dw_slon, at NASA Ames Research Center.

formance of the code on the two machines is compared to previous results on Per-
eight

processor Cray Y-MP [4] which is a shared memory MIMD machine with a smallnumber of processors.

The paper presents the implementation, mapping scheme, results, and simple per-

formance models to understand the impact of certain parameters on the performance

of both machines. A brief description of the numerical algorithm is also included for

completeness; for more details see [9]. The results are presented using both 64 bit

arithmetic (Double Precision abbreviated by DP) and 32 bit arithmetic (Single Pre-

cision abbreviated by SP). The paper also describes bottlenecks and limiting factors
for algorithms of this class on these architectures.



2 The numerical algorithm

Let t be time; p and p the density and pressure; u, v, and w the velocity components

in Cartesian coordinates (x,y,z); Q the vector of conserved variables; E, F, and
the convective flux vectors; and Ev, Fv, and G_ the flux vectors for the viscous

terms. Then the three-dimensional Navier-Stokes equations in generalized curvilinear

coordinates (_, r/, () can be written as

o':':3,Q+ o':':3_(_'- E',.,) + 0,7(F -/?',,) + 0,:(6 -G,_) = 0 (1)

where

_)=h E=h

/3U ]
Uu + (:_p [

Uv + _uP | '
Uw + GPJ

ff' = h
Vu + rl. p

Vv + q_p | '
Vw + rlzpJ

G=h

/3W ]
Wu + Gp [

Wv + ¢,,p[
Ww + (,pJ

(2)

and

_ = h[_E_ + (_F_+ _za_]

F. = h[rl_E_ + rlyFv + _Cv]

G. = h[(_E,, + (yF_ + _zG_] (3)

E_j --

Fu

I 0

2_0_,_- ],(o.,_ + Oyv+ Ozw)
,(oyu + O=v)

0

#(O_v+ Oy,,)
2#O_v- _,(o+_ + O_v+ ozw) '

_(O_v+ O_w)

[ o ]#(O.w+ O;4
G,_ = #(Ouw + O_v) , (4)

2uo._- ]#(o.,, + O_v+ O.w)

where/3 is the pseudocompressibility parameter and h is the cell volume. The con-

travariant velocity components U, V, and W are defined as

U = Gu + _3,v+ Gw. V = r/.u + r/_,v+ rUw. W = Gu + (_,v + Gw (5)

An unfactored implicit scheme can be obtained from a nonlinear implicit scheme

by linearizing the flux vectors about the previous time step and dropping terms of

the second and higher order.

[I + eAt(D_A + D,# + D(O)16Q =-AtR (6)



where/_ is the residual

k = D¢(/_ -/_v) + D.(/>- Fv) + De(0 - 0v) (7)

and I is the identity matrix. _5(_ is the correction (_,_+1 _ (_=, where n denotes the

time^̂ level. De, D,, and D e are difference operators that approximate 0_, 0n, and 0¢.
A, B, and C are the Jacobian matrices of the convective flux vectors.

2 o_ oF 00
=-_, B=-_, 5==OQ (8)

For a = ½, the scheme is second order accurate in time. For other values of a,
the time accuracy drops to first order.

The LU-SGS scheme [9] can be written as

£D-lU6Q = -AtR (9)

where

£= I +aAt(D-_.4 + + D_D + + DCS+_ _- . B--C-)

z) = I + _/\t(2+ - 2- + _+ - D- + 5 + - 5-)

lg = I + aAt(D_]i- + D+/3 - + D_5- + 2 + +/3+ + 5 +) (10)

In the framework of the LU-SGS algorithm, a variety of schemes can be developed

by different choices of numerical dissipation models and Jacobian matrices of the flux

vectors. It is desirable that the matrix should be diagonally dominant to assure the

convergence. Jacobian matrices leading to diagonal dominance are constructed so

that '+' matrices have nonnegative eigenvalues while '-' matrices have nonpositive
eigenvalues. For example,

2+= 2[A + P(2)I] (11)

and

p(A) = xmax[] A(_)l] (12)

where _(A) represent eigenvalues of Jacobian matrix A and x is a constant that is

greater than or equal to 1. The diagonal matrix of eigenvalues is

U 0

^ ^ 0 U
A(A)= 0 0

0 0

where C_ is the pseudospeed of sound.

0 0

0 0

u +c_ o
o v-c_

(13)

ce = _/u=+ z(_ + e_+ _) (14)

4



It is interesting to note that the need for block inversions can be eliminated if we

use approximate Jacobian matrices of Eq. (11). Setting a = 1 and At = oo gives a

Newton-like iteration. Then, Eq. (10) reduces to

where

z = p1- _i+_,,_,k- _+j-l,k- _,+j,k-1

D=pI

u = pI + AT+l,j,k+ U/,j+l,k+ CEj,k+I

p = p(_) + p(_) + p(0)

The algorithm permits scalar diagonal inversions since

Diagonal(_. or U) = [i
0 0 p

(15)

(16)

(17)

A semidiscrete finite volume method is used for spatial discretization. This

method is based on the local flux balance of each mesh cell; for more details see

[9].

In order to suppress the tendency for odd and even point decoupling, artificial

dissipation models are added to central difference schemes. Dissipation models are

often called filters since they work like low pass filters which damp out high frequency

modes. The dissipative flux d is explicitly added to the convective flux in the following

form.

-(di+½,j, k - di_½,j, k + di,j+½, k - di,J_½, k + dl,j,k+ ½ - di,j,k_½) (18)

For simplicity, di+_,j,k is denoted by di+l in the following.
In this paper, we use a spectral radius dissipation model which is third order

accurate in space. Third order terms formed from fourth differences provide damping.

_,+_= -,r(2),+_(O,,+:- 30,+1+ 30,,- 0,,-1) (19)

where r(A) is the spectral radius of Jacobian matrix A and _ is a small constant. Eq.

(19) can be rewritten as

where

6,+½= -_(_),+_ (_,+_- 2_,+ _,-1)

_, = 0,+,- O,

(20)

(21)

3 The mapping scheme

The solution procedure of Eq. (9) consists of the computation of/_, the right hand side

(RHS), and the generation of the £: and/g matrices, Eq. (10), and their inversion,

the left hand side (LHS). The RHS computation is highly parallel with no data

dependency in the three directions. The computation of/: and/4 at (i,j, k), as given



in Eq. (15), requires the values of A,/3, and C at (i-l,j,k), (i,j-l,k), and (i,j,k-1)

for E and (i + 1, j, k), (i, j + 1, k), and (i, j, k + 1) for H. This means the points of

each of the i + j + k = constant hyperplanes can be computed concurrently and they

depend on the previous plane for Z: and on the next plane for U. This feature of the

algorithm can be exploited on parallel machines in different ways depending on the

architecture and memory organization. On vector and shared memory architectures

this algorithm can be implemented by reordering the three-dimensional arrays in the

LHS computation into two-dimensional arrays, that is,

Q(ipoint, iplane) = Q(i,j,k)

where iplane is the serial number of the plane in the sweep direction, and ipoint is

the address of the point in that plane. This approach was taken by Yoon et al. [9]

in vectorizing the INS3D-LU code and by Fatoohi and Yoon [4] in multitasking this
code.

The outlined approach may not be efficient on distributed memory machines be-

cause of data locality and memory requirements. Barszcz et al. [1] analyzed different

solution algorithms for the triangular solves and introduced a new mapping scheme

for distributed memory architectures. The new scheme is called the skew hyperplane

mapping and used in this work. This scheme is briefly described here; for more details

see [1].

The skew hyperplane mapping is based on packing hyperplanes into two dimen-

sional planes so that they occupy the same volume as the original domain. The mth

hyperplane can be defined by the set:

Hm= {(i,j,k),li+j+k=rn}, m=3,4,...,(N_+Nn+N_) ,

where

I<i<N_, I<_j<_N,7, l<_k<N¢

Packing can be accomplished by the following one-to-one mapping:

3=j,

]¢= ((i +j + k- 3) mod N¢) + 1

At most three hyperplanes can be packed into one ]¢ plane.

The skew hyperplane mapping can be used either in the LHS computation only or

in both the LHS and RHS computations. The first approach requires the transforma-

tion of a set of arrays required in the LHS computation and the inverse transformation

of another set of arrays required for the next time step. The second approach requires

the mapping once and operating on the mapped domain in the computation of both

the LHS and RHS. The second approach is adopted in this work.

6



4 The INS3D-LU code

The flow solver code, INS3D-LU, was developed based on the numerical algorithm

described in Section 2. The two major portions of the code are preprocessing and time

stepping. There could be a third portion for postprocessing, such as generating output

files for plotting the results, but this is not included in this work. The preprocessing

portion involves several routines for grid generation, initialization, calculation of cell

volumes, and calculation of auxiliary cell volumes and cell center coordinates. The

time stepping portion has the following routines:

spec Calculate spectral radii (Eqs. (11) to (13)),

vsflux Calculate viscous flux (Eqs. (3) and (4)),

filtsr Calculate numerical dissipation (Eqs. (18), (20) and (21)),

lusgs Calculate convective flux vectors (Eqs. (2)), Jacobian matrices (Eqs. (8)), and

invert matrices (Eqs. (9) and (10)),

bcijk Compute boundary conditions for i,j,k-directions

These five routines constitute one iteration of the LU-SGS scheme.

The INS3D-LU code was used in this study to compute the viscous incompressible

flow through a straight square duct. The Reynolds number is 790. The grid generation

part is quite simple for this problem. The preprocessing portion of the code takes less

than one iteration on one processor of the Cray Y-MP. In this work, we concentrate

on the time stepping portion of the code.

5 Multitasking on the Cray Y-MP (Revisited)

The implementation of the INS3D-LU code on eight processors of the Cray Y-MP

is summarized here for completeness; for more details see [4]. A profile of the code

on a single processor of the Y-MP is given for comparison. The Y-MP located at

NAS has eight processors, 128 Mwords of main memory, and 6 nsec clock cycle. Peak

performance of the machine is 2.67 Gflops.

The code was vectorized by using two-dimensional arrays of the form given in

Section 3; see [9]. It was multitasked by parallelizing the outer loops of the RHS and

stripmining the inner loops of the LHS; see [4]. Autotasking was used for multitasking.

Table 1 contains the results of multitasking on the Y-MP for two grid sizes. The time

per iteration is based on the time stepping portion of the code averaged over ten

iterations. The processing rate was obtained by using the hardware performance

monitor of the machine. The largest grid achieved a speedup of over seven, compared

to single processor results, and a performance rate of about 46% of the peak rate of
the machine.

Table 2 shows the timings and performance rates of the main routines of the

time stepping portion of the code on a single processor of the Y-MP for the 63 ×

63 × 63 domain. These numbers were obtained by using Perffrace of the Y-MP. The

performance of these routines ranges between 112 and 244 Mflops.

7



6 Implementation on the CM2

6.1 The CM2 architecture and software

The CM2 at NAS has 32k 1-bit serial processors, 1024 64-bit Weitek floating point

units (FPU), 4 GBytes of memory, a clock rate of 7 MHz, and two front end (FE)

machines: a Sun 4/490 and a Vax 6320. The Sun front end machine is used for

this work. The FE machines store user programs, perform scalar computations, and

send instructions for parallel computations to the processors through one or more

sequencers. Regular communication between processors is accomplished through the

NEWS (North, East, West, South) grid, where each processor communicates with its

neighbors on an n-dimensional grid. The transfer rate between FPUs is about 0.5

MBytes/sec. The peak performance of the machine is 14.34 Gflops.

The Connection Machine Fortran (CMF) compiler [8] has two execution models,

fieldwise and slicewise. The fieldwise model uses the single bit processors along with

the FPUs to do floating point operations. The slicewise model uses only the FPUs as

the basic processing units. In the slicewise model, the CM2 at NAS can be considered

as a SIMD machine with 1024 processing elements (PEs). Each PE is a vertex of a

ten dimensional hypercube, and has an FPU and 4 MBytes of memory. Each FPU

includes pipelined floating point adder and multiplier and several vector and scalar

registers. The data path between the PE memory and vector registers is 32 bit wide.

6.2 The implementation

The skew hyperplane mapping scheme was used to adapt the INS3D-LU code to the

CM2. The code runs almost entirely on the CM2. Only the generation of the grid

and some initialization for the test problem (flow through a straight square duct)

were performed on the front end machine. These calculations were performed on the

unmapped domain for simplicity and adaptability to solve different problems. Then,

two arrays were transformed to the mapped domain and moved to the CM2.

The RHS and LHS computations were performed on the CM u_ng the mapped

domain. The RHS computation is done on all grid points of each k plane simulta-

neously since there is no data dependency between hyperplanes of a single k plane.

(Recall that each k plane can contain at most three hyperplanes.) The LHS compu-

tation has to be done on the hyperplanes, rather than the k planes, since there is a

data dependency between hyperplanes.

The mapping scheme implemented on the CM2 stores the k dimension in-processor

(serial) and partitions the _ and ) dimensions across processors (parallel). This means

that this mapping has a maximum of N_ x N, parallelism. The CMF compiler

partitions an array with parallel dimensions into subgrids based on the array size

and the machine size. The parallel dimensions are mapped onto the CM processor

array, and then the serial dimension is added. Each subgrid is assigned to a PE,

and has an equal number of grid points. The number of grid points per PE is equal

to ((N_ x N,7)/P ) × N¢ where P is the number of PEs. Since the vector length of

the FPU is four, each subgrid is required to be a multiple of four. In addition, the

CMF compiler partitions a routine into basic blocks. Large basic blocks usually mean



better performancesincethat leadsto efficientuseof the FPUs and their registers.

In order .to operate on boundary planes (to impose boundary conditions), boolean

masks are used. These masks are generated early in the computation and used in the

RHS computation. The LHS computation requires the use of a 3-D boolean mask to

mask out the unnecessary points in every k plane. This mask has N_ + N, + N¢ - 2

planes; one for every hyperplane. However, the use of the masks implies that some

processors are not doing useful work every k plane. The current implementation

of conditional store operations on the CM2 is not as efficient as the unconditional

ones (about three times slower). Therefore, it is more efficient to perform the LHS

computation on all grid points in every ]¢ plane and mask out the unneeded points

when computing the residuals at the end of every iteration. This means about three

times of the amount of useful work is actually performed in the LHS computation.

One of the features of the LU-SGS algorithm is that points of every hyperplane

depend only on the adjacent hyperplanes. The skew hyperplane mapping preserves

this feature of the algorithm. This means that all communication in the LHS com-

putation is to nearest neighbors. In the RHS computation, communication is also to

nearest neighbors.

6.3 The Results

The results of implementing the INS3D-LU code on the CM2 for two grid sizes are

listed in Tables 3 and 4 using Double Precision (DP) and Single Precision (SP).

respectively. The CMF compiler release 1.1 operating in the slicewise mode is used

to generate these results. Notice that the number of PEs is based on the 64-bit

processors rather than the 1-bit serial processors. Memory requirements are based

on programmer declared variables, both local and global. Temporary arrays created

by the compiler, for optimization and others, are not included in the table. The

127 × 127 × 127 grid requires almost 2 GBytes of memory (at least 512 PEs) to run

on the CM2 using DP. Subgrid size reflects the amount of work performed by each

PE. All arrays are declared with power-of-two since the grid size (63 × 63 × 63 or

127 x 127 × 127) reflects the number of cells, rather than the number of grid points.

The time per iteration is based on the time stepping portion of the code averaged

over ten iterations. Performance rates are based on these timings and the number

of flops computed on the Y-MP. The best achieved rates for this code using DP and

SP are 231 and 366 Mflops, respectively, which represent 1.6% and 2.6% of the peak

performance of the CM2.

Performance of the main routines of the code for several cases is given in Tables 5

through 8. In these tables, execution time per call, percentage of the total execution

time for that routine, communication time, percentage of the communication time of

the execution time for every routine, and performance rate of that routine are given.

(Performance of individual routines for the 127 x 127 x 127 domain is not given.)

Communication time is estimated using the TMC Prism programming environment,

version 1.0. Only the function c.shift is used for communication in this code. Perfor-

mance rate is computed by using the number of flops measured on the Y-MP. Results

are given for four cases: 1) 63 × 63 x 63 domain on 256 PEs using DP, 2) 63 × 63 × 63

domain on 512 PEs using DP, 3) 63 x 63 x 63 domain on 256 PEs using SP, and 4)



127 x 127 x 127 domain on 512 PEs using DP.

Tables 5 through 8 show that the routine lusgs takes about 50% of the total exe-

cution time of every iteration. The main part of this routine is the LHS computation

where the amount of the useful work represents only about one third of the actual

work performed on the machine, as described in the previous subsection. The per-

formance rate of this routine, as given in Tables 5 through 7, reflects the useful work

rather than the actual work since it is computed based on the number of flops on the

Y-MP. If the additional work is included in computing the rate for this routine, its

performance would be comparable to spec and vsflux. These two routines suffer the

least deficiency on the CM2.

The communication cost is the main cause for low performance for the routine

filtsr. This routine computes the numerical dissipation which requires a lot of com-

munication. The routine bcijk does very little computation and a lot of data move-

ment and communication on all processors even though only a small fraction of this

work is useful. This caused a very low performance rate for this routine on the CM2.

Tables 5 through 8 show that communication time represents a reasonable portion

of the total execution time (ranging from 43% to 59% for the four cases) even though

all communication is nearest neighbor. This shows that the cost of regular communi-

cation is quite significant on the CM2 and should not be ignored in developing codes
for the machine.

6.4 Performance analysis

The results given in Tables 3 through 8 show the impact of several parameters on

the performance of the code on the CM2. Among these parameters are: number of

processors used, domain size, and word length (64 or 32 bits). In order to understand

the impact of these parameters, a simple performance model for computation and

communication costs is developed. The model for communication costs is derived

from the models developed by Levit [7] and Chang [3].

Let D : (d x d x d) be a cubic domain and P : (Pl x p_) the number of PEs

which partitions D into G : (gl x g2 x g3) subgrids where the first two dimensions of

the domain are parallel and the third one is serial so that gl = d/pa, g2 = d/p2 and

g3 = d. Then the computation time, Tco,_v, can be modeled by the following simple
formula:

T¢_,,_v oc G x tcomp/4 + C_omv, (22)

where t_o,,,v is the time to do a 64 bit floating point operation on a vector of length

four and Cco,_v is the overhead time for the CM to receive addresses and data from

the frond end for each floating point vector operation. The value of tcomv includes

time to load and store operands to memory. The value of C_o,_v depends on the size

of the block; i.e, the number of flops in a block. Here Cco,,,p is basically the average

overhead for each vector operation. For large subgrids and big blocks, Cco,,v could

be insignificant. Eq. (22) can be rewritten as

T¢o,,,p oc (4pl-_)t_°_P + C_omp (23)

10



The communication time, T_omm, has two components: ON-PE communication

time, To_v,, and OFF-PE communication time, Tollv_. The ON-PE communication

results from moving data within a PE while the OFF-PE communication results from

moving data between PEs. These times depend on which dimension data is shifted.

For this code, the numbers of shift operations along the first two dimensions are

about equal. Also, only communication with distance one is modeled here since all

communication is nearest neighbor.
The communication model is based on the observation that a shift with distance

one along the first dimension of the array G causes moving a boundary plane of size

g2 × g3 to its neighboring PE while all other planes, of size ((gl - 1) x g2 × g3) total,

will move internally within the PE. Similarly, when the array is shifted along the

second dimension. This observation is summarized in the following formulas:

Tonpe o_ (gl - 1) x g2 x g3 x tonpe + gl X (g2 -- 1) x g3 x to.p_ + Co,p_, (24)

Tol]pe (x g2 × gz x toZp_ + g, x g3 × toHpe + CoHpe, (25)

where tonp_ is the time to move a 64 bit word within a PE (copying data), Co,_p¢ is

the startup time in moving data within a PE, tollp_ is the time to move a 64 bit word

to a neighboring PE, and Collp_ is the startup time in moving data externally. This

model does not take into account other overheads mentioned by Chang [3]. Eqs. (24)

and (25) can be rewritten as

To,p, (d d 2 (d- + - 1)( ) o.po+ Co.po, (26)Pl P2

ToIIp _ oc (_)to], v, + (_)tol]p_ + CoIIv_. (27)

The CM2 is a SIMD machine where only one instruction can be issued every cycle.

This means that at any time the machine can do only one of the following olmrations:

computation, internal communication, or external communication. Therefore, the

total communication time is the summation of the internal and external communica-

tion times and the total time is the summation of the total communication time and
d3

the computation time. The times Tcomp, To_p_, and To]]p_ are O(V), O(_), O(a_)'v

respectively, for pl = p2 -- P-

As previously mentioned, this simple model is developed to understand the impact

of certain parameters on the performance of the machine. In order to study the impact

of each parameter, that parameter is changed while the other ones remain unchanged.

Both the model and the measured timing results are used to understand the impact

of each parameter. The model is used mainly to give an upper bound on a possible

change while the measured results represent an observed change. Eqs. (23), (26) and

(27) will be used in this analysis.

6.4.1 Increasing the number of processors

If the same code (using the same domain) runs on a larger machine, then the subgrid

sizes will get smaller; i.e., smaller granularity. So if p2 is doubled, then changes in

the model are given by:

11



1. Tcomv will be reduced by up to 50% depending on Ccomp and t_o,,v (which remain

unchanged).

2. Co,_v_ and tonv_ will remain unchanged but the first term in Eq. (26) will be

reduced by 50% and the second term will be reduced by more than 50%. There-

fore, To,_p_ can be reduced by more than 50% if Co,w is negligible.

3. the first term in Eq. (27) will be reduced by 50% while the other terms will

remain unchanged. Therefore, Tollw will be reduced by at most 25% depending

on Collp_ (assuming that the first two terms in Eq. (27) are equal).

So, the impact of increasing the number of processors on the communication cost

depends on which communication cost, ON-PE or OFF-PE, is dominant.

The impact of increasing the number of processors on the performance of the code

can be measured from data collected in Tables 5 and 6. Table 9 shows the measured

percentage changes in communication, computation, and total time when the number

of PEs is increased from 256 to 512. Overall, the computation time is reduced by

42%, the communication time is reduced by only 19%, and the total execution time

is reduced, by 30%. This means that OFF-PE communication has dominated the

communication cost for this code. Also, it means that increasing the number of

processors has more impact on the computation time than on the communication
time.

If the number of processors is quadrupled, then

1. Tco,_v will be reduced by a factor of up to four.

2. Tonp_ will be reduced by a factor of about four.

3. Tollv_ will be reduced by a factor of up to two.

The experimental results (see Tables 3 and 4) shows that for the 63 x 63 x 63

domain when the number of PEs is increased from 256 to 1024 the execution time

is reduced by a factor of about two, both in SP and DP. For the 127 x 127 x 127

domain in SP, the execution time is reduced by a factor of 2.8 when the number of

PEs is increased by a factor of four. This shows that performance improvement due

to increasing the number of processors depends on the subgrid size (an improvement

of 2.1 for subgrid 4 x 4 x 64 compared to 2.8 for subgrid 8 x 8 x 128 both in SP).

6.4.2 Reducing the word length

The use of SP (32 bits) instead of DP (64 bits) will have the following impact:

1. t_o,_v will be reduced by at most 50% depending on the locality of variables

(vector registers or PE memory) while C_o,,,v will be less affected (only in moving

scalars to the CM). Therefore, data locality will determine the impact on Tcomv.

2. t_ w will be reduced by about 50% while Conw will be less affected. Therefore,

To_v_ will be reduced by at most 50% depending on Co,v_.

12



3. toffp_ will be reduced by 50% while Colfp_ will be less affected. Therefore, Toijp,

will be reduced by at most 50% depending on Coffp_.

The impact of the word size is measured using data collected from Tables 5 and

7. Table 10 shows the measured reduction in communication, computation, and total

times when the code for the 63 × 63 × 63 domain was recompiled and run using 256 PEs

and SP. Overall, the communication time was reduced by 46%, the computation time

by 24%, and the total time by 35%. This shows that the communication overhead

constants, Colfp_ and Co_p_, do not have a major impact on the communication time.

Also, it shows that reducing the word length has more impact on the communication

time than on the computation time. The results for other cases, i.e., larger number of

PEs and larger domain, show a decrease in the total time by 35% to 38%; see Tables

3 and 4. This shows that this parameter is less affected by the other parameters (the

number of PEs and domain size).

6.4.3 Increasing the domain size

If the number of grid points in all three dimensions is doubled; i.e., D is increased by

a factor of eight, then

1. Tcomp will be increased by a factor of up to eight depending on Cco,_p and tcomp

(which remain unchanged).

2. Tonp, will be increased by a factor of less than eight depending on the subgrids

size and Co_p, and to_p_ (which remain unchanged).

3. Tollp_ will be increased by a factor of at most four depending on Coffp_ and

tollp, (which remain unchanged).

The impact of increasing the domain size can be measured using Tables 6 and 8.

Table 11 shows the increase in communication, computation, and total time when the

grid size is doubled in every dimension while using the same number of processors

(512 PEs) and DP. Results show that the communication time is increased by a factor

of 3.65 while the computation time is increased by a factor of 6.52. The total time

increased by a factor of 4.82. This means that increasing the domain size caused

larger increase in the computation time than in the communication time.

Performance improvement resulted from increasing the domain size can be defined

by the ratio of the number of processors to the increase in the execution time. Based

on this definition, performance improvement of 66% (8/4.82) is obtained for the 512

PEs, DP case. Performance improvement for the 1024 PEs, DP case is about 90%

(see Table 3). In SP, performance improvement of 40%, 62%, and 85% using 256,

512, and 1024 PEs, respectively, is obtained (see Table 4). These cases show that

performance improvement due to increasing the domain size depends on the size of

the subgrid.

13



7 Implementation on the iPSC/860

7.1 The iPSC/860 architecture and software

The iPSC/860 [5] at NAS has 128 nodes interconnected by a seven-dimensional hyper-

cube network and a front end machine, which is called the System Resource Module

(SRM). Each node has a 64-bit i860 microprocessor, 8 MBytes of memory, and a

Direct Connect Module (DCM). Each DCM, which is responsible for communication

between nodes, has eight channels, seven of which are for hypercube interconnection

and one for I/O. Communication between nodes is based on circuit switching where

a dedicated path is established between two nodes whenever they want to communi-

cate. The transfer rate between nodes is 2.8 MBytes/sec while the latency for short

messages (up to 100 bytes)is 67 #sec [2].

The i860 processor includes two pipelined floating point units, adder and multi-

plier; an eight KByte data cache; a four KByte instruction cache; an integer unit;

and several floating point registers. The clock rate for the machine is 40 MHz. The

data path between the floating point registers and the data cache is 128 bit wide

while the data path between the registers and local memory is 64 bit wide. In single

precision, each of the floating point units (adder and multiplier) can produce one

result every clock cycle but in double precision, the adder needs one cycle while the

multiplier needs two cycles to produce one result. This yields to a peak performance

of 80 Mflops in SP and 60 Mflops in DP for every node. The peak performance of

the machine therefore is 10.24 Gflops in SP and 7.68 Gflops in DP.

The programming model for the iPSC/860 is message passing where nodes com-

municate and synchronize with each other by sending and receiving messages. Calls

to deal with messages are added to a serial Fortran code whose data have been par-

titioned across nodes. Data partitioning as well as inserting communication calls are
done by the user.

7.2 The implementation

The skew hyperplane mapping scheme is used to adapt the INS3D-LU code to the

iPSC/860. The iPSC/860 version of INS3D-LU has a host code, which runs on the

SRM or a remote machine, and a node code, which runs on a set of nodes called a

cube. The host code communicates with the node code in sending input data and

receiving final results. The host code can be easily eliminated, and its I/O function
can be accomplished by one of the nodes. All routines of the code run on the cube.

This includes the grid generation and initialization parts which were performed on
the unmapped domain.

The domain was partitioned into P subdomains and each subdomain is assigned

to a node. Since the LHS computation has only 2-D parallelism, either 1-D or 2-D

partitioning schemes can be used. The main limitation with 1-D partitioning is that

the number of grid points in the partitioned dimension should be greater than or
equal to the number of nodes.

The 2-D partitioning scheme used is implemented by dividing the domain into

blocks, pencils, along the _ and ) dimensions; the _: dimension is stored locally. Each

14



block contains at least ((N_ × Nn)/P ) × N¢ grid points. Each block may also contain

two buffers (virtual planes) in each partitioned direction to take into account the

interface planes of the four neighboring blocks. These buffers cause an increase in the

amount of memory required per node.

In some cases, communication can be eliminated if the information about the

interface planes is computed locally. There is a trade-off between computation and

communication. If computation is less expensive than communication, as the case

with the iPSC/860, then it is always beneficial to do local computation and commu-

nicate only when it is absolutely necessary.

The RHS and LHS computations for each block are performed on every node of

the iPSC/860 using the mapped domain. Each node performs the RHS computation

and communicates with its four neighbors by sending and receiving arrays of data.

Most of these arrays are two dimensional, representing sides of each block where

the first dimension is either _ or j and the second dimension is k. Some of these

arrays are one dimensional (k dimension) representing corners of each block. Nodes

in general perform the same amount of work in the RHS computation. However, in

computing the boundary conditions, especially in bcijk, only the boundary nodes do

this computation while the rest proceed in their work.

The LHS computation proceed diagonally from one corner of the domain to the

opposite corner (for the £ term) and backward (for the//term). For every hyperplane,

each node computes the £ term and sends messages to its east and north neighbors

containing the updated interface points. These messages are of variable lengths and

packed to reduce the message overhead. The same node also receives messages from

the other two neighbors for the next hyperplane. The whole process is repeated in

computing the/4 term, except that messages are sent to the west and south neighbors

and received from the east and north neighbors. This procedure has a load balancing

problem since some nodes have more work to do than others.

7.3 The Results

The results of implementing the INS3D-LU code on the iPSC/860 are listed in Tables

12 and 13 using DP and SP, respectively. The Fortran compiler pgftn Unix release

1.3a is used to produce these results. Memory requirements are based on programmer

declared variables for all nodes. More storage is required when more nodes are used

since the total buffer space increases. The required memory to run the code in DP is

about twice as much as for SP since almost all variables are real floating point. The

smallest cube that the 63 x 63 x 63 grid can run on should have at least 32 nodes

using DP and 16 nodes using SP while the 127 x 127 x 127 grid does not fit in the

whole machine using DP. The sizes of the blocks, given in Tables 12 and 13, are based

on the average sizes of the arrays for that particular cube since some arrays need a

buffer for every neighboring block while others do not. Time per iteration is based

on the time stepping portion of the code averaged over ten iterations. Performance

rates are based on these timings and the number of flops computed on the Y-MP.

The best achieved rates for this code represent less than 2% of the peak performance

of the iPSC/860.

Performance of the main routines of the code on 32 nodes of the iPSC/860 using

15



the 63x 63x 63domainand DP is givenin Table 14. Executiontime for everyroutine
on everynodeis measured,and the longesttime (slowestnode) aswell asthe average
time over all nodes are given in the table. The averagenode results also include
the percentageof the total time and the performancerate, basedon the number of
flops on the Y-MP. The total time for the slowestnodeis basedon the longest time
to perform ten iterations; rather than the sum of the maximum times for the main
routines. Notice that the total time for the slowestnodeis the sameas the average
nodesincethe execution times for theseroutines overlap;i.e., a node can finish one
routine and moveto anotherroutine eventhough other nodesarestill working on the
first routine. This overlappingis not quite significant (about 3%).

Table 14showsthat the differencebetweenthe longestand averagetimesis within
8%except for the routine bcijk where there is a factor of over two between the two

times. This is because bcijk handles boundary conditions and most of the time only
boundary nodes perform these operations. The difference between the two times did

not show the load balancing problem with the routine lusgs, which handles the LHS

computation. This is because there is a global sum operation at the end of this

routine to compute the maximum residual after every iteration which delays nodes

that are ahead. This is the only global communication function in the code.

The main routines of the code have different performance rates for different rea-

sons. The routine spec, which calculates the spectral radii, uses an intrinsic function

(square root) which has not been implemented efficiently on the iPSC/860. The rou-

tine filtsr, which calculates the numerical dissipation, does some computation but a

lot of communication between nodes. The routine lusgs which takes more than 57%

of the total time has a load balancing problem, as mentioned before, and causes some

nodes to wait for others to complete their work. The routine bcijk has a low rate

because it does very little computation on a few nodes, however, it causes little harm

since it does not consume that much time, less than 1%. The routine vsflux suffers

the least deficiency on the iPSC/860.

The time to perform the LHS computation within the routine lusgs was also

measured, since this part behaves differently from the rest of the code. For the above

case, 63 x 63 x 63 domain on 32 nodes and using DP, the average and longest times for

the LHS computation only are 2.182 seconds and 2.615 seconds, respectively, which

represent 36.2% and 43.3% of the total execution time per iteration.

7.4 Performance analysis

A simple performance model is developed in order to understand the impact of certain

parameters on the performance of the code on the iPSC/860. These parameters are:

number of processors used, domain size, and word length (64 or 32 bits). Certain

assumptions are made in this model. For the RHS computation, it is assumed that

there is not that much overlapping between the computation time, Tco,_v_, and the

communication time, Tc_,, and load is fairly balanced. For the LHS computation,

it is assumed that the main issue is load balancing and the communication time is

not quite significant since it overlaps with the computation time, Tco_,l. The last

observation was also noticed by Barszcz et al. [1]. It is also assumed, for simplicity,

that in the RHS computation each block has a buffer for each partitioned dimension

16



eventhough someblocks haveno buffers.
Let D : (d × d × d) be a cubic domain and P : (pa × p2) the number of nodes

that partitions D into blocks where the first two dimensions are partitioned across

processors and the third one is held in-processor. So that each block is d/pl × d/p2 ×

d. Then the RHS computation and communication times can be modeled by the

following formulas:

__ d,i + + 1)( t)tco,.p (2s)
TcomprOC'(pl 1)(_- 2

nomm + +Coomm, (29)

where tcomv is the time to perform a floating point operation; t_om,_ is the time to

send an eight byte word to a nearest neighbor, which is the only communication in

the code; and Cco_,-_ is the startup time for sending a message of over 100 bytes, since

all messages in the RHS are of this size. Bokhari [2] has measured the communication

times on the iPSC/860 and found that the values of t_o_p and Ccomp are about 177

and 3 #seconds, respectively.

For Pl = P2 = P, these times are:

T o,.p. + a) (30)
p

Tco,,,,.r + C_o_ (31)

The model for the LHS computation is given in [1] for pl = p2 = p. This model is

based on the observation that for most hyperplanes there are nodes with the maximum

possible number of points (d:/p 2) and this determines the speed of the code since these

nodes are the slowest. However, for the first and last few hyperplanes, the slowest

node has less than d2/p 2 points. Therefore,

T_o,-,,pt [(3d 2)(p_--2)2(_ __d2c_ - - - 1)(_)]t_omp, (32)

where the first term represents the maximum number of points per node and the

second term represents the reduction in that number for some hyperplanes. This

equation can be simplified as

T_._,.pt cx (_)(3- _)tcomp (33)

d 3 d 2 d 3 •

The times T_ompr, Tcom,,,, and Tco,,p_ are O(_-), 0(7- ), 0(_-), respectively.
In order to understand the impact of the three parameters, only one parameter

is changed every time. Both the model and the total execution time are used to

understand that impact. Communication time is included in the total time since it

could not be measured separately. Eqs. (30), (31) and (33) are used for our analysis.

17



7.4.1 Increasing the number of nodes

If the number of nodes is quadrupled, then

1. Tcomm. will be reduced by a factor of less than four.

2. Tco,,,_ will be reduced by a factor of less than two.

3. Tco,.,,pl will be reduced by a factor of less than four.

A case study here is for 63 × 63 × 63 domain in SP, see Table 13, when the number

of nodes is increased from 16 to 64, the total execution time is decreased by a factor

of 3.1. Experimental results for other cases, both in SP and DP, show factors of 2.8

and 2.9; see Tables 12 and 13.

7.4.2 Reducing the word length

If SP (32 bits) is used instead of DP (64 bits), then

1. depending on the number of adds, and multiplies and the structure of the code,
T_or_p_ will be reduced by at most 50%.

2. t_or_m will be reduced by 50% while C_omm remains unchanged. Therefore,

Tcom,_ will be reduced by less than 50%.

3. T_o,,,vz will be reduced by at most 50%, similar to T_o_vr.

The impact of using SP on the performance of the code is reported in Tables 12

and 13. For the 63 x 63 x 63 domain, using SP instead of DP caused a decrease in the

total measured time by 22%, 21%, and 25% using 32, 64, and 128 nodes, respectively.

7.4.3 Increasing the domain size

If the number of grid points in every dimension is doubled, which means that D is

increased by a factor of eight, then

1. Tco_p, will be increased by a factor of less than eight.

2. Tco,,_r will be increased by a factor of less than four.

3. Tc_pt will be increased by a factor of eight.

The impact of increasing the domain size is measured using SP and 128 nodes

(Table 13). The execution time per iteration is increased by a factor of 6.8 when the

domain size is increased by a factor of eight. This means that the performance of the

code has improved by 18% (8/6.8) with the increase of the domain size.

18



8 Comparison and Concluding Remarks

8.1 Code performance

The performance of the INS3D-LU code on the CM2 and iPSC/860 is compared to

its performance on the Y-MP. Only results in DP are considered here. Table 15

summarizes the results on the three machines, as presented in Tables 1, 3, and 12.

The performance rates are compared to single processor rates of the Y-MP. These
results show that for the 63 × 63 × 63 domain both machines at NAS could not

match the performance of one processor of the Y-MP using this code. Both machines

achieve only about one tenth of the performance of the eight processor Y-MP. For

the 127 x 127 x 127 domain, the 32k processor CM2 outperformed one processor of

the Y-MP by 36%. (Results for this domain on the iPSC/860 are not available for

lack of memory.) The code achieved less than 2% of the peak rate of both machines

while it achieved over 40% of the peak rate of the Y-MP.

The performance models of the two machines show that the computation times

and internal communication time are O(_-) while external communication times are

O(_p) where d is the number of points in every dimension and P is the number

of processors. These models give some explanation for the changes in performance

as one parameter is changed. Increasing the number of processors by a factor of

four causes performance improvement of two for the smaller domain and 2.8 for the

larger domain on the CM2 while it is about three for the smaller domain on the

iPSC/860. This shows that increasing the number of processors has a greater impact

with large granularity than with smaller ones, since blocks (or subgrids) are larger on

the iPSC/860 and for the larger domain on the CM2 than for the smaller domain on

the CM2. Performance improvement due to reducing the word length is larger on the

CM2 (35% to 38%) than on the iPSC/860 (21% to 25%) mainly because of different

microprocessor architectures. Increasing the domain size has a greater impact on the

CM2 than on the iPSC/860 also because of task granularity.

The performance models can also be used to explain performance changes if more

than one parameter is changed. In addition, the models can be used to predict

performance improvement if one or more of the basic timing units is improved, like

increasing the network bandwidth or computation speed.

Having a better understanding of the two architectures allows the behavior of the

code to be explained.

8.2 Architectural features

The building blocks of the two machines, CM2 and iPSC/860, are different in struc-

ture but comparable in performance; especially when the number of these blocks is

taken into account. Table 16 shows the main features of the two architectures using

DP. The two machines are based on two different microprocessors: Intel i860 and

Weitek wtl 3164. These microprocessors feature only one path between the CPUs

and local memory, compared to three paths on the Y-MP. This path is used for load-

ing and storing data to and from memory. Also, the add, multiply and load pipelines

for these microprocessors run at different rates, while all these pipelines can produce

19



a result every cycleon the Y-MP. Each pipeline hasa latency so theserates can be
achievedonly after an initial delay. The i860hasa cachebut unlessthere is a reuseof
data, pipelined load directly from memory is moreefficient than through the cache;
for more details see[6]. The vector registersof the wtl 3164are of sizefour so that
all vector operations are basedon this size,while vector registerson the Y-MP are
of size64. All these factors -- width of memory path, pipeline rates, and latency
-- contribute to the low performancerateson the CM2 and iPSC/860, comparedto
the Y-MP. Also, there is a lossin performancedue to the communicationbandwidth
betweenPEs.

The clock rate and communication bandwidth of the two machinesseemto in-
dicate that the iPSC/860 is about four to eight times faster than the CM2 per PE.
This meansthat the two machinesat NAS areof comparableperformance.Also, the
INS3D-LU code achievedcomparableperformanceon the two machines. However,
there are softwareand algorithmic issuesthat can alsoaffect the performanceof the
two machines.Other algorithms canexploit certain featuresof the two architectures
in different ways,and therefore,canachievedifferentperformancerateson thesetwo
machines.

8.3 Limitations

The adaptation of the INS3D-LU code to the CM2 and iPSC/860 exploited certain

features of the algorithm and the machines. The LU-SGS algorithm requires only

nearest neighbor communication which is a desirable feature on parallel machines.

However, the study showed that even nearest neighbor communication cannot be

ignored on these machines, especially on the CM2 where the communication time

ranges between 43% and 59% of the execution time. The LHS computation requires

the use of hyperplanes where there is performance degradation by a factor of up to

three due to either load imbalance, as on the iPSC/860, or computation overhead, as

on the CM2. The other limitation is handling boundary conditions where only the

boundary processors are active. The impact of boundary conditions is more significant

on the CM2 than on the iPSC/860 because of the number of processors and the SIMD

nature of the CM2. The iPSC/860 also suffers from inefficient implementation of some
intrinsic functions.

There are other issues concerning partitioning and scheduling the work among the

processors. Barszcz et al. [1] suggested a multipartitioning scheme where multiple

subpartitions are assigned to each processor in order to reduce the load imbalance.

They report performance improvement with this scheme in some cases. Other ap-

proaches were also considered by Barszcz et al. [1] such as precomputing the Jacobian

matrices or using a different partitioning scheme. However, these schemes have other

problems like increased memory requirement or limited scalability.

This study concentrated only on power-of-two grid sizes. Other studies (see for

example Barszcz et al. [1]) showed that non-power-of-two grids are less efficient on

the CM2 because the CMF compiler has to pad the arrays and communication is

more expensive with these grids.

The software environment can have a great impact on the performance of the ma-

chine, specifically the Fortran compiler and communication functions. The Fortran

2O



compiler on theseparallel machinesis not efficient enoughto use somefeaturesof
the architecture, suchaspipelined load on the i860. This factor degradesthe perfor-
manceof thesemachinesevenfurther. Also, communicationfunctions havenot been
implementedquite efficiently on thesemachines,suchas cshift on the CM2.

In summary, this study showed that reasonable performance can be achieved on

moderately to highly parallel machines using a full 3-D Navier-Stokes solver. However,

the Y-MP has outperformed the CM2 and iPSC/860 for this particular algorithm.

This is partly because only a small fraction of the peak performance of the processing

elements of these machines can be achieved due to certain architectural features like

memory bandwidth.

9 Acknowledgment

I wish to thank Seokkwan Yoon for providing the code and valuable discussions

about the algorithm. Also, I am grateful to Eric Barszcz for a critical reading of the

manuscript.

References

[1] E. BARSZCZ, R. FATOOHI, V. VENKATAKRISHNAN, AND S. WEERATUNGA,

Solution of Regular, Sparse Triangular Linear Systems on Vector and Distributed-

Memory Multiprocessors (under preparation).

[2] S. BOKHARI, Communication Overhead on the Intel iPSC/860 Hypercube, ICASE

Interim Report 10, May 1990.

[3] Y. CHANG, Comparison of Finite Difference and the Pseudo-Spectral Approxi-

mations for Hyperbolic Equations and Implementation Analysis on Parallel Com-

purer CM-2, CAM Report 92-02, Dept. of Mathematics, Univ. of California, Los

Angeles, January 1992.

[4] R. FATOOHI AND S. YOON, Multitasking the INS3D-LU code on the Cray Y-MP,
AIAA 10th Computational Fluid Dynamics Conference, Honolulu, June 24-27,

1991, pp. 619 - 626.

[5] INTEL CORP., iPSC/2 and iPSC/860 Users's Guide, June 1990, Order Number

311532-006.

[6] K. LEE, On the Floating Point Performance of the i860 Microprocessor, Report

RNR-90-019, NASA Ames Research Center, October 1990.

[7] C. LEVIT, Grid Communication on the Connection Machine: Analysis, Perfor-

mance, and Improvements, Int. J. High Speed Computing, Vol. 1, No. 2, 1989,

pp. 367 - 381.

[8] THINKING MACHINES Co., CM Fortran Optimization Notes: Slicewise Model,

Version 1.0, March 1991.

21



Domain size

63 x 63 x 63

127 x 127 x 127

Table 1:

Proc

1

2

4

8

1

2

4

8

INS3D-LU on the Cray Y-MP.

Memory Time per iteration Performance

(MSytes) (sec) (Mflops)
121

122

122

122

925

930

930

930

1.580

0.833

0.434

0.242

13.002

6.730

3.395

1.811

167

318

609

1093

170

328

650

1218

Table 2: Performance of main routines of INS3D-LU on one processor of the Y-MP
using 63 x 63 x 63 domain.

Routine Time per call

(sec)
spec

vsflux

filtsr

lusgs

bci j k

0.101

0.478

0.148

0.844

0.001

Total 1.572

Perc. Performance

(%) (nflops)

6.4 244.1

30.4 194.5

9.4 154.5

53.7 146.8

0.1 111.8

100.0 168.0

[9] S. YOON, D. KWAK, AND L. CHANG, LU-SGS Implicit Algorithm for Three-

Dimensional Incompressible Navier-Stokes Equations with Source Term, AIAA
Paper 89-1964-CP, 1989.

22



Table 3: Performanceof INS3D-LU on the CM2 using
Domain size Time perPEs Memory Subgrid

(MBytes)

)P.

63 x 63 x 63 256 228
512 228
1024 228

127x 127x 127 512
1024

size
4x4x64
4x2x64
2x2x64

iteration (sec)
4.519
3.162
2.264

Performance
(Mflops)

59
84
117

1824 8 x 4 x 128 15.104 146
1824 4 x 4 x 128 9.540 231

Table 4: Performanceof INS3D-LU on the CM2 using SP.
Domain size PEs Memory Subgrid Time per Performance

63x63x63

127x 127x 127

(MBytes)
256 120
512 120
1024 120
256 960
512 960
1024 960

size
4x4x64
4x2x64
2x2x64
8x8x128
8x4x128
4x4x128

iteration (sec)
2.935
1.989
1.394
16.828
9.817
6.027

(Mflops)
90
133
190
131
225
366

Table 5: Profiling of INS3D-LU on 256 PEs of the CM2 using 63 x 63 x 63domain
and DP.

Routine Execution time Communication time Performance

8pec

vsflux

filtsr

lusgs

bcijk

Total

Time

(sec)

0.276

O.833

0.901

2.229

0.273

4.512

Perc. of total

time (%)

6.1

18.5

20.0

49.4

6.1

100.0

Time Perc. of exec.

(sec) time (%)

0.149 54.0

0.463 55.6

0.640 71.0

0.889 39.9

0.165 60.0

2.306

(Mflops)

89.3

111.6

25.4

55.6

0.4

51.1 58.6

23



Table 6: Profiling of INS3D-LU on 512
and DP,

Routine Execution time
Time Perc. of total
(sec) time (%)

spec 0.201 6.4

vsflux 0.624 19.8

filtsr 0.697 22.1

lusgs 1.455 46.1

bcijk 0.180 5.7

Total 3.157 100.0

PEs of the CM2 using 63 × 63 × 63 domain

Communication time

Time Perc. of exec.

(sec) time (%)
0.123 61.2

0.381 61.1

0.547 78.5

0.708 48.7

0.114 63.3

1.873 59.3

Performance

(Mflops)

122.7

149.0

32.8

85.2

0.6

83.8

Table 7: Profiling of INS3D-LU on 256 PEs of the CM2 using 63 x 63 × 63 domain
and SP.

Routine

spec

vsflux

filtsr

lusgs

bci j k

Total

Execution time

Time Perc. of total

(sec) time (%)

0.173 5.9

0.537 18.3

0.529 18.0

1.522 51.9

0.170 5.8

2.931 100.0

Communication time

Time Perc. of exec.

(sec) time (%)

O.O83 48.O

0.244 45.4

0.362 68.4

0.483 31.7

0.082 48.2

1.254 42.8

Performance

(Mfiops)

142.5

173.1

43.2

81.4

0.7

90.2

Table 8: Profiling of INS3D-LU on 512 PEs of the CM2 using 127 x 127 x 127 domain
and DP.

Routine Execution time Communication time

Time

(sec)

8pec 1.009

vs flux 2.684

filtsr 2.798

lusgs 7.865

bcijk 0.862

Total 15.218

Perc. of total

time (%)

6.6

17.6

18.4

51.7

5.7

100.0

Time Perc. of exec.

(sec) time (%)

0.415 41.1

1.480 55.1

1.865 66.7

2.587 32.9

0.493 57.2

6.840 44.9

24



Table 9: Impact of doubling the numberof PEs (from 256to 512)on measuredtimes
using 63 x 63

Routine

spec

vsflux

filtsr

lusgs

bci j k

x 63 domain and DP.

Reduction in

communication time (%)

17

18

15

20

31

Reduction in

computation time (%)

39

34

42

44

39

Reduction in

total time (%)

27

25

23

35

34

Total 19 42 30

Table 10: Impact of reducing the word length (from 64 to 32 bits) on measured times

using 63 × 63 x 63 domain and 256 PEs.
Routine Reduction in

spec

vsflux

filtsr

lusgs

bci j k

Total

Reduction in Reduction in

communication time (%) computation time (%) total time (%)

44

47

43

46

50

29

21

36

22

19

46 24

37

36

41

32

38

35

Table 11: Impact of increasing the domain size (from 63 x 63 x 63 to 127 x 127 × 127)

on measured times

Routine

spec

vsfluz

filtsr

lusgs

bci j k

usin$ 512 PEs and DP
Increase in

communication time

3.37

3.89

3.41

3.65

4.32

Increase in

computation time

6.35

5.28

6.22

7.07

5.59

Increase in

total time

5.02

4.30

4.01

5.41

4.79

Total 3.65 6.52 4.82

25



Tabl_
Domain size

63 x 63 x 63

12: Performance of INS3D-LU on the iPSC/860 in DP.
Nodes

32

64

128

Memory

(MBytes)
169

179

200

Block

size

17x9x64

9x9x64

9x5x64

Time per

iteration (sec)
6.075

3.530

2.166

Performance

(Mflops)

44

74

122

Table 13: Performance of INS3D-LU on the iPSC/860 in SP.

Domain size Nodes Memory

(MBytes)
63 x 63 x 63 16

32

64

128

80

85

90

100

127 x 127 x 127 128 678

Block Time per Performance

size iteration (see) (Mflops)
17x17x64

17x9x64

9x9x64

9x5x64

8.573

4.727

2.775

1.632

31

56

95

162

17 x 9 x 128 11.055 200

Table 14: Profiling of INS3D-LU on 32 nodes of the iPSC/860 using 63 x 63 x 63
domain and DP.

Routine

spec

vs flux

filtsr

lusgs

bcijk

Slowest node

Time

(sec)
0.773

1.145

0.764

3.496

0.037

Total 6.033

Time

(see)

0.724

1.131

0.706

3.454

0.016

6.033

Average node

Perc. of exec. Performance

time (%) (Mflops)

12.0

18.7

11.7

57.3

0.3

34.1

82.2

32.4

35.9

7.3

100.0 43.8

26



Table 15: Performancecomparisonof INS3D-LU in DP.
Domainsize Machine Processors Ratio to Y-MP/1
63 x 63 x 63 Y-MP

127x 127 x 127

CM2

iPSC/860

Y-MP

CM2

1

2

4

8

8K

16K

32K

32

64

128

16K

32K

1.00

1.90

3.64

6.53

0.35

0.50

0.70

0.26

0.45

0.73

1.00

1.93

3.83

7.18

0.86

1.36

Table 16: Main features of the CM2 and iPSC/860 in DP.

Feature CM2 iPSC/860

I. Building Blocks

Processing Elements (PEs) wtl 3164 i860

Clock Rate (MHz) 7 40

Memory (MBytes) 4 8

Peak performance (Mflops) 14 60

Width of memory to CPU path 32 bit 64 bit

Add rate (Cycles/result) 1 1

Multiply rate (Cycles/result) 1 2

Read rate (Cycles/result) ': 2

Write rate (Cycles/result) 4 3

II. Machines at NAS

Number of PEs

Memory (GBytes)

Peak performance (Gflops)

Communication between PEs:

Bandwidth (MBytes/sec)

Connectivity

1024 128

4 1

14.34 7.68

2.8 0.5

Hypercube Hypercube

27




